Referencia y Bibliografía

Ondas Delta (0.1–4 Hz)

  1. ^ Walker, Peter (1999). Chambers dictionary of science and technology. Edinburgh: Chambers. p. 312. ISBN 0-550-14110-3.
  2. ^ “Glossary. A resource from the Division of Sleep Medicine at Harvard Medical School, Produced in partnership with WGBH Educational Foundation”. Harvard University. 2008. Retrieved 2009-03-11. “The 1968 categorization of the combined Sleep Stages 3 – 4 was reclassified in 2007 as Stage N3.”
  3. ^ Iber C, Ancoli-Israel S, Chesson A, and Quan SF for the American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, 1st ed.: Westchester, Illinois: American Academy of Sleep Medicine, 2007.
  4. ^ De Gennaro, L., Ferrara, M., & Bertini, M. (2000). The spontaneous K-complex during stage 2 sleep: is it the ‘forerunner’ of delta waves? [Article]. Neuroscience Letters, 291(1), 41–43.
  5. ^ Ehlers, C. L., and D. J. Kupfer. “Slow-wave Sleep: Do Young Adult Men and Women Age Differently?” J Sleep Res. 6.3 (1997): 211-15. Print.
  6. ^ Gross, Richard E. (1992). Psychology: the science of mind and behaviour. London: Hodder & Stoughton. pp. 112–113. ISBN 0-340-56136-X.
  7. ^ Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Peters, J. M., Luxen, A., et al. (1997). Functional neuroanatomy of human slow wave sleep. Journal of Neuroscience, 17(8), 2807-2812.
  8. ^ Mistlberger, R. E., Bergmann, B. M., & Rechtschaffen, A. (1987). RELATIONSHIPS AMONG WAKE EPISODE LENGTHS, CONTIGUOUS SLEEP EPISODE LENGTHS, AND ELECTROENCEPHALOGRAPHIC DELTA WAVES IN RATS WITH SUPRACHIASMATIC NUCLEI LESIONS. [Article]. Sleep, 10(1), 12-24.
  9. ^ Lee, J., Kim, D., Shin, H. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking a1g-subunit of T-type calcium channels. PNAS;101(52): 18195-18199.
  10. a b Hobson, J. , & Pace-Schott, E. (2002). The Cognitive Neuroscience of Sleep: Neuronal Systems, Consciousness and Learning. Nature Reviews Neuroscience, 3(9), 679-693.
  11. ^ Brandenberger, G. (2003). The Ulradien Rhythm of Sleep: Diverse Relations with Pituitary and Adrenal Hormones. Revue Neurologique, 159(11), S5-S10.
  12. ^ Taylor, Eric; Rutter, Michael (2002). Child and adolescent psychiatry. Oxford: Blackwell Science. p. 162. ISBN 0-632-05361-5.
  13. ^ “Brain Wave Changes In Adolescence Signal Reorganization Of The Brain”. ScienceDaily. 2006-12-08. Retrieved 2008-03-24.
  14. ^ Colrain, I. M., Crowley, K. E., Nicholas, C. L., Afifi, L., Baker, F. C., Padilla, M., et al. (2010). Sleep evoked delta frequency responses show a linear decline in amplitude across the adult lifespan. [Article]. Neurobiology of Aging, 31(5), 874-883.
  15. ^ Inui, Koji, Eishi Motomura, Hiroyuki Kaige, and Sen Nomura. “Temporal Slow Waves and Cerebrovascular Diseases – Inui – 2008 – Psychiatry and Clinical Neurosciences.” Psychiatry and Clinical Neurosciences 55.5 (2001): 525-31. Wiley Online Library. Web. 29 Nov. 2010.
  16. ^ Hales, Robert E.; Yudofsky, Stuart C. (2007). The American Psychiatric Publishing Textbook of Neuropsychiatry and Behavioral Neurosciences, Fifth Edition (American Psychiatric Press Textbook of Neuropsychiatry). American Psychiatric Publishing, Inc.ISBN 1-58562-239-7.
  17. ^ Inui, Koji, Hozumi Kawamoto, Masahiko Kawakita, Kazuhisa Wako, Hiromichi Nakashima, Masanori Kamihara, and Junichi Nomura. “Temporal Delta Wave and Ischemic Lesions on MRI.” Psychiatry and Clinical Neurosciences 48.4 (1994): 891-98. Print.
  18. a b Pilon M; Zadra A; Joncas S et al. Hypersynchronous delta waves and somnambulism: brain topography and effect of sleep deprivation. SLEEP 2006;29(1): 77-84.
  19. ^ Feinberg, I., T. Baker, R. Leder, and J. D. March. “Response of Delta (0-3 Hz) EEG and Eye Movement Density to a Night with 100 Minutes of Sleep.” Sleep 11.5 (1988): 473-87. Print.
  20. ^ Kryzhanovskii, G. N., A. A. Shandra, L. S. Godlevskii, and I. I. Mikhaleva. “Appearance of Parkinsonian Syndrome after Administration of Delta Sleep-inducing Peptide into the Rat Substantia Nigra.” Biull Eksp Biol Med. 109.2 (1990): 119-21. Print.
  21. ^ Alfimova, M. V., & Uvarova, L. G. (2007). Changes in the EEG spectral power during perception of neutral and emotionally salient words in schizophrenic patients, their relatives and healthy individuals from general population. [Article]. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I P Pavlova, 57(4), 426-436.
  22. ^ Sekimoto, M., et al., Cortical regional differences of delta waves during all-night sleep in schizophrenia, Schizophr. Res. (2010), doi:10.1016/j.schres.2010.11.003
  23. ^ Abdelkarim, T. H., Westin, T., Romaker, A., & Girish, M. (2002). Presence of delta waves in REM sleep during polysomnography as a sign of acute hypoglycemic encephalopathy. [Meeting Abstract]. Sleep, 25, 531.
  24. ^ Appearance of Parkinsonian Syndrome after Administration of Delta Sleep-inducing Peptide into the Rat Substantia Nigra.” Biull Eksp Biol Med. 109.2 (1990): 119-21. Print.
  25. ^ Inui, K., H. Sannan, H. Ota, Y. Uji, S. Nomura, H. Kaige, I. Kitayama, and J. Nomura. “EEG Findings in Diabetic Patients with and without Retinopathy.” Acta Neurologica Scandinavica 97.2 (1998): 107-09. Print.
  26. ^ Nezu, Arthur M. ., Christine Maguth. Nezu, Pamela A. . Geller, and Irving B. . Weiner. Handbook of Psychology. New York: Wiley, 2003. Print.
  27. ^ Colrain, I. M., S. Turlington, and F. C. Baker. “Impact of Alcoholism on Sleep Architecture and EEG Power Spectra in Men and Women.” Sleep. 32.10 (2009): 1341-352. Print.
  28. ^ Walter WG. The location of cerebral tumors by electroencephalography. Lancet 1936;2: 305–8.
  29. ^ “Biofeedback for Epileptic Seizures; EEG Neurofeedback for Epilepsy”. Epilepsyhealth.com. Retrieved 2011-02-14.
  30. ^ EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Adam R Clarke, Robert J Barry, Rory McCarthy, Mark Selikowitz. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 1 November 2001 (volume 112 issue 11 Pages 2098-2105)
  31. ^ Lopes, M.C., Guilleminault, C., Rosa, A., Passarelli, C., Roizenblatt, S., Tufik, S. Delta sleep instability in children with chronic arthritis. Brazilian Journal of Medical and Biological Research. 2008;41(10): 938-43.
  32. ^ Sharma Arvind: Sleep as a State of Consciousness in Advaita Vedanta; State University of New York Press, 2004
  33. ^ Lands, William. “Alcohol, Slow Wave Sleep, and the Somatotropic Axis.” Alcohol 18.2 (1999): 109-22.
  34. ^ Davenne, D. M. “Enhancement of Quiet Sleep in Rabbit Neonates by Muramyl Dipeptide.” Am J Physiol. 253.4 (1987): 646-54. Print.
  35. ^ Foldvary-Schaefer, N., I. De Leon Sanchez, M. Karafa, D. Dinner, and H. H. Morris. “Gabapentin Increases Slow-wave Sleep in Normal Adults.” Epilepsia 43.12 (2002): 1493-497. Print.
  36. a b D’haenen, H. A. H., Johan A. Den Boer, and Paul Willner. Biological Psychiatry. Chichester: Wiley, 2002. Print.
  37. ^ Afaghi, A. , O’Connor, H. , & Chow, C. (2008). Acute Effects of the Very Low Carbohydrate Diet on Sleep Indices. Nutritional Neuroscience, 11(4), 146-154.

Ondas Theta (4–7 Hz)

  1. a b Hughes JR (July 2008). “Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior”. Epilepsy Behav 13 (1): 25–31.doi:10.1016/j.yebeh.2008.01.011PMID 18439878.
  2. a b Ian Gold (1999). “Does 40-Hz oscillation play a role in visual consciousness?”.Consciousness and Cognition 8 (2): 186–195. doi:10.1006/ccog.1999.0399.PMID 10448001.
  3. a b Buzsaki, György (2006). “Cycle 9, The Gamma Buzz”Rhythms of the brain. Oxford.
  4. a b c Robert PollackThe Missing Moment, 1999
  5. ^ W. Singer and C.M. Gray, Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18 (1995), pp. 555-586
  6. a b Vanderwolf CH (Feb 2000). “Are neocortical gamma waves related to consciousness?”Brain Res 855 (2): 217–24. doi:10.1016/S0006-8993(99)02351-3PMID 10677593.
  7. ^ Hughes JR. (1964). Responses from the visual cortex of unanesthetized monkeys. pp. 99–153. In: Pfeiffer CC, Smythies JR, (Eds), International review of neurobiology vol. 7, Academic Press, New York OCLC 43986646
  8. ^ Crick, F., & Koch, C. (1990b). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences v.2, 263-275.
  9. ^ Crick, F., Koch, C. (2003). “Framework for consciousness”. Nature Neuroscience 6(2).
  10. ^ Andreas K. Engel, Pascal Fries, Peter Koenig, Michael Brecht, Wolf Singer (1999). “Temporal Binding, Binocular Rivalry, and Consciousness”. Consciousness and Cognition 8 (2).
  11. ^ Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E (Mar 2007). “Synchronization of neural activity across cortical areas correlates with conscious perception”. J Neurosci 27 (11): 2858–65. doi:10.1523/JNEUROSCI.4623-06.2007.PMID 17360907.
  12. ^ Ward LM, Doesburg SM, Kitajo K, MacLean SE, Roggeveen AB (Dec 2006). “Neural synchrony in stochastic resonance, attention, and consciousness”. Can J Exp Psychol60 (4): 319–26. doi:10.1037/cjep2006029PMID 17285879.
  13. ^ <J. Cardin, M. Carle, K. Meletis, U. Knoblich, F. Zhang, K. Deisseroth (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459: 663-668.>
  14. a b c O’Nuallain, Sean. “Zero Power and Selflessness: What Meditation and Conscious Perception Have in Common”. Retrieved 2009-05-30. Journal: Cognitive Sciences 4(2).
  15. ^ Kaufman, Marc (January 3, 2005). “Meditation Gives Brain a Charge, Study Finds”.The Washington Post. Retrieved May 3, 2010.
  16. ^ Lutz A., Greischar L.L., Rawlings N.B., Ricard M., Davidson R.J. (2004). “Long-term meditators self-induce high apmlitude gamma synchrony during mental practice”.Proceedings of the National Academy of Sciences USA 101: 16369–16373.
  17. ^ “Scientific American:Meditation On Demand”.
  18. ^ Whitham EM, Pope KJ, Fitzgibbon SP et al. (Aug 2007). “Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG”Clin Neurophysiol 118 (8): 1877–88.doi:10.1016/j.clinph.2007.04.027PMID 17574912.
  19. ^ Whitham EM, Lewis T, Pope KJ et al. (May 2008). “Thinking activates EMG in scalp electrical recordings”Clin Neurophysiol 119 (5): 1166–75.doi:10.1016/j.clinph.2008.01.024PMID 18329954.
  20. ^ Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (May 2008). “Transient induced gamma-band response in EEG as a manifestation of miniature saccades”.Neuron 58 (3): 429–41. doi:10.1016/j.neuron.2008.03.027PMID 18466752.
  21. ^ Dynamic predictions: Oscillations and synchrony in top-down processing, AK Engel, P Fries, W Singer, Nature Reviews Neuroscience, 2001
  22. ^ Adjamian P, Holliday IE, Barnes GR, Hillebrand A, Hadjipapas A, and Singh KD. (2004) Induced stimulus-dependent Gamma oscillations in visual stress. European Journal of Neuroscience; 20: 587–592.
  23. ^ Hadjipapas A., Adjamian P, Swettenham J.B., Holliday I.E., Barnes G.R. (2007). “Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex”. Neuroimage 35 (2): 518–30.
  24. ^ Muthukumaraswamy SD, Singh KD (2008). “Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex”.NeuroImage 40: 1552–1560.
  25. ^ Swettenham JB, Muthukumaraswamy SD, Singh KD (2009). “Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli”. Journal of Neurophysiology 102: 1241–1253.

Ondas Alpha (8–12 Hz)

  1. ^ Palva, S. and Palva, J.M., New vistas for a-frequency band oscillations, Trends Neurosci. (2007), doi:10.1016/j.tins.2007.02.001
  2. ^ Kolev V, Başar-Eroglu C, Aksu F, Başar E. (1994). EEG rhythmicities evoked by visual stimuli in three-year-old children. Int J Neurosci. 75(3-4):257-70. PMID 8050866
  3. ^ Karbowski K. Hans Berger (1873-194). Journal of Neurology. 249(8):1310-1311
  4. ^ Ulrich Kraft. Train Your Brain-Mental exercises with neurofeedback may ease symptoms of attention-deficit disorder, epilepsy and depression–and even boost cognition in healthy brains. Scientific American. 2006
  5. ^ Domino E. F., Ni L. S., et. al(2009). Tobacco smoking produces widespread dominant brainwave alpha frequency increases. International Journal of Psychophysiology. 74(3):192-198.
  6. ^ Niedermeyer E.(1997). Alpha rhythms as physiological and abnormal phenomena. International Journal of Psychophysiology. 26(1-3):31-49.
  7. ^ Pivik R. T., Harman K. (1995). A Reconceptualization of EEG alpha activity as an index of arousal during sleep: all alpha activity is not equal. Journal of Sleep Research. 4(3):131-137.
  8. ^ Allas Task Force (1992). ASDA report on EEG arousals: scoring rules and examples. Sleep. 15(2):173-184.
  9. ^ Germanowicz D, Lumertz MS, Martinez D, Margarites AF (2006). “Sleep disordered breathing concomitant with fibromyalgia syndrome”. J Bras Pneumol 32 (4): 333–8.PMID 17268733.
  10. ^ (1994). Alpha-delta sleep in patients with a chief complaint of chronic fatigue. Southern Medical Journal. 87(4)
  11. ^ Time. Behavior: Alpha Wave of the Future. Jul, 1971
  12. ^ “Brain Wave Patterns Can Predict Blunders, New Study Finds”UC Davis News and Information. University of California, Davis campus. 23 March 2009.
  13. ^ http://www.straightdope.com/columns/read/2942/can-brainwaves-be-detected-in-lime-jell-o

Ondas Mu (8–13 Hz)

  1. a b Amzica, Florin; Fernando Lopes da Silva (2010). “Celluluar Substrates of Brain Rhythms”. In Schomer, Donald L.; Fernando Lopes da Silva. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields(6th ed.). Philadelphia, Pa.: Lippincott Williams & Wilkins. pp. 33–63. ISBN 978-0-7817-8942-4.
  2. a b c d Oberman, Lindsay M.; Edward M. Hubbarda; Eric L. Altschulera; Vilayanur S. Ramachandran; Jaime A. Pineda (2005). “EEG evidence for mirror neuron dysfunction in autism spectrum disorders”. Cognitive Brain Research 24 (2): 190–198.doi:10.1016/j.cogbrainres.2005.01.014PMID 15993757.
  3. a b c d e f g h Pineda, Jaime A. (1 December 2005). “The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing””. Brain Research Reviews 50(1): 57–68. doi:10.1016/j.brainresrev.2005.04.005PMID 15925412.
  4. ^ Churchland, Patricia (2011). Braintrust: What Neuroscience Tells Us About Morality. Princeton, NJ: Princeton University Press. p. 156. ISBN 978-0-691-13703-2.
  5. a b c d e Nyström, Pär; Ljunghammar, Therese; Rosander, Kerstin; Von Hofsten, Claes (2011). “Using mu rhythm desynchronization to measure mirror neuron activity in infants”. Developmental Science 14 (2): 327–335. doi:10.1111/j.1467-7687.2010.00979.xPMID 22213903.
  6. a b c Bernier, R.; Dawson, G.; Webb, S.; Murias, M. (2007). “EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder”Brain and Cognition 64 (3): 228–237. doi:10.1016/j.bandc.2007.03.004PMC 2709976.PMID 17451856.
  7. a b c d Williams, Justin H.G.; Waiter, Gordon D.; Gilchrist, Anne; Perrett, David I.; Murray, Alison D.; Whiten, Andrew (1 January 2006). “Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder”Neuropsychologia 44(4): 610–621. doi:10.1016/j.neuropsychologia.2005.06.010PMID 16140346.
  8. a b c d e f g h i Pfurtscheller, Gert; Christa Neuper (2010). “EEG-Based Brain-Computer Interfaces”. In Schomer, Donald L.; Fernando H. Lopes da Silva. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields(6th ed.). Philadelphia, Pa.: Lippincott Williams & Wilkins. pp. 1227–1236. ISBN 978-0-7817-8942-4.
  9. ^ Cohen-Seat, G., Gastaut, H., Faure, J., & Heuyer, G. (1954). “Etudes experimentales de l’activite nerveuse pendant la projection cinematographique”. Rev. Int. Filmologie 5: 7–64.
  10. ^ Gastaut, H. J., & Bert, J. (1954). “EEG changes during cinematographic presentation”.Electroencephalogr. Clin. Neurophysiol. 6 (3): 433–444. doi:10.1016/0013-4694(54)90058-9PMID 13200415.
  11. ^ Cochin, S., Barthelemy, C., Lejeune, B., Roux, S., & Martineau, J. (1998). “Perception of motion and qEEG activity in human adults”. Electroencephalogr Clin Neurophysiol107 (4): 287–295. doi:10.1016/S0013-4694(98)00071-6PMID 9872446.
  12. ^ Cochin, S., Barthelemy, C., Roux, S., & Martineau, J. (1999). “Observation and execution of movement: similarities demonstrated by quantified electroencephalography”. Eur J Neurosci 11 (5): 1839–1842. doi:10.1046/j.1460-9568.1999.00598.xPMID 10215938.
  13. ^ Muthukumaraswamy, S. D., Johnson, B. W., & McNair, N. A. (2004). “Mu rhythm modulation during observation of an object-directed grasp”. Brain Res Cogn Brain Res19 (2): 195–201. doi:10.1016/j.cogbrainres.2003.12.001PMID 15019715.
  14. ^ Arroyo, S., Lesser, R. P., Gordon, B., Uematsu, S., Jackson, D., & Webber, R. (1993). “Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes”. Electroencephalography and Clinical Neurophysiology 87(3): 76–87. doi:10.1016/0013-4694(93)90114-BPMID 7691544.
  15. ^ Pfurtscheller, G., Brunner, C., Schlogl, A., & Lopes da Silva, F. H. (2006). “Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks”. Neuroimage 31 (1): 153–159. doi:10.1016/j.neuroimage.2005.12.003.PMID 16443377.
  16. ^ Pineda, J. A., Allison, B. Z., & Vankov, A. (2000). “The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP’s): toward abrain–computer interface (BCI)”. IEEE Trans Rehabil Eng 8 (2): 219–222.doi:10.1109/86.847822PMID 10896193.
  17. ^ Ulloa, E. R., & Pineda, J. A. (2007). “Recognition of point-light biological motion: mu rhythms and mirror neuron activity”. Behav Brain Res 183 (2): 188–194.doi:10.1016/j.bbr.2007.06.007PMID 17658625.
  18. ^ di Pellegrino, G.; Fadiga, L.; Fogassi, L.; Gallese, F.; Rizzolatti, G. (1992). “Understanding motor events: A neurophysiological study”. Experimental Brain Research 91 (1): 176–180. PMID 1301372.
  19. ^ Rizzolatti, G; Fogassi, L; Gallese, V (2001 Sep). “Neurophysiological mechanisms underlying the understanding and imitation of action”. Nature reviews. Neuroscience 2(9): 661–70. doi:10.1038/35090060PMID 11533734.
  20. a b c d Marshall, Peter J.; Meltzoff, Andrew N. (2011). “Neural mirroring systems: Exploring the EEG mu rhythm in human infancy”Developmental Cognitive Neuroscience 1 (2): 110–123. doi:10.1016/j.dcn.2010.09.001PMC 3081582.PMID 21528008.
  21. a b Keuken, M. C.; Hardie, A.; Dorn, B. T.; Dev, S.; Paulus, M. P.; Jonas, K. J.; Den Wildenberg, W. P.; Pineda, J. A. (6). “The role of the left inferior frontal gyrus in social perception: an rTMS study”. Brain Research 1383: 196–205.doi:10.1016/j.brainres.2011.01.073PMID 21281612.
  22. ^ Sinigaglia, C; Rizzolatti, G (2011 Mar). “Through the looking glass: self and others”.Consciousness and cognition 20 (1): 64–74. doi:10.1016/j.concog.2010.11.012.PMID 21220203.
  23. a b c d Berchicci, M.; Zhang, T.; Romero, L.; Peters, A.; Annett, R.; Teuscher, U.; Bertollo, M.; Okada, Y.; Stephen, J.; Comani, S. (21 July 2011). “Development of Mu Rhythm in Infants and Preschool Children”Developmental Neuroscience 33 (2): 130–143. doi:10.1159/000329095PMC 3221274PMID 21778699.
  24. ^ Meltzoff, A. N.; Kuhl, P. K.; Movellan, J.; Sejnowski, T. J. (16). “Foundations for a New Science of Learning”Science 325 (5938): 284–288.doi:10.1126/science.1175626PMC 2776823PMID 19608908.
  25. ^ Pineda, J.A.; Juavinett, A.; Datko, M. (1). “Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism”. Medical Hypotheses79 (6): 790–798. doi:10.1016/j.mehy.2012.08.031PMID 22999736.
  26. ^ Bastiaansen, JA; Thioux, M; Nanetti, L; van der Gaag, C; Ketelaars, C; Minderaa, R; Keysers, C (1). “Age-related increase in inferior frontal gyrus activity and social functioning in autism spectrum disorder”. Biological Psychiatry 69 (9): 832–838.doi:10.1016/j.biopsych.2010.11.007PMID 21310395.
  27. ^ Holtmann, Martin; Steiner, Sabina; Hohmann, Sarah; Poustka, Luise; Banaschewski, Tobias; Bölte, Sven (1). “Neurofeedback in autism spectrum disorders”. Developmental Medicine & Child Neurology 53 (11): 986–993. doi:10.1111/j.1469-8749.2011.04043.xPMID 21752020.
  28. ^ Coben, Robert; Linden, Michael; Myers, Thomas E. (24). “Neurofeedback for Autistic Spectrum Disorder: A Review of the Literature”. Applied Psychophysiology and Biofeedback 35 (1): 83–105. doi:10.1007/s10484-009-9117-yPMID 19856096.
  29. ^ Machado, S; Araújo, F; Paes, F; Velasques, B; Cunha, M; Budde, H; Basile, LF; Anghinah, R; Arias-Carrión, O; Cagy, M; Piedade, R; de Graaf, TA; Sack, AT; Ribeiro, P (2010). “EEG-based brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation”. Reviews in the neurosciences 21 (6): 451–68. doi:10.1515/REVNEURO.2010.21.6.451PMID 21438193.
  30. a b c d e f Pfurtscheller, Gert; McFarland, Dennis J. (2012). “BCIs that use sensorimotor rhythms”. In Wolpaw, Jonathan R.; Wolpaw, Elizabeth Winter. Brain-Computer Interfaces: Principles and Practice. Oxford: Oxford University Press. pp. 227–240. ISBN 9780195388855.
  31. a b Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W. (2009). “Evolution of brain-computer interfaces: going beyond classic motor physiology”Neurosurgical Focus 27 (1): E4. doi:10.3171/2009.4.FOCUS0979.PMC 2920041PMID 19569892.
  32. a b c Allison, B Z; Leeb, R; Brunner, C; Müller-Putz, G R; Bauernfeind, G; Kelly, J W; Neuper, C (1). “Toward smarter BCIs: extending BCIs through hybridization and intelligent control”. Journal of Neural Engineering 9 (1): 013001. doi:10.1088/1741-2560/9/1/013001PMID 22156029.

Ondas Beta (12–30 Hz)

  1. ^ Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, Rohrbaugh J, O’Connor SJ, Kuperman S, Reich T, Begleiter (2002). “Beta power in the EEG of alcoholics”. BIOLOGICAL PSYCHOLOGY 52 (8): 831–842. PMID 12372655.
  2. ^ Baumeister J, Barthel T, Geiss KR, Weiss M (2008). “Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress”. NUTRITIONAL NEUROSCIENCE 11 (3): 103–110. PMID 18616866.
  3. ^ Baker, SN (2007). “Oscillatory interactions between sensorimotor cortex and the periphery”Current opinion in neurobiology 17 (6): 649–55.doi:10.1016/j.conb.2008.01.007PMC 2428102PMID 18339546.
  4. ^ Lalo, E; Gilbertson, T; Doyle, L; Di Lazzaro, V; Cioni, B; Brown, P (2007). “Phasic increases in cortical beta activity are associated with alterations in sensory processing in the human”. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale 177 (1): 137–45. doi:10.1007/s00221-006-0655-8.PMID 16972074.
  5. ^ Zhang, Y; Chen, Y; Bressler, SL; Ding, M (2008). “Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm”Neuroscience 156 (1): 238–46. doi:10.1016/j.neuroscience.2008.06.061PMC 2684699.PMID 18674598.
  6. ^ Pogosyan, A; Gaynor, LD; Eusebio, A; Brown, P (2009). “Boosting cortical activity at Beta-band frequencies slows movement in humans”Current biology : CB 19 (19): 1637–41. doi:10.1016/j.cub.2009.07.074PMC 2791174PMID 19800236.

Ondas Gamma (25–100 Hz)

  1. a b Hughes JR (July 2008). “Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior”. Epilepsy Behav 13 (1): 25–31.doi:10.1016/j.yebeh.2008.01.011PMID 18439878.
  2. a b Ian Gold (1999). “Does 40-Hz oscillation play a role in visual consciousness?”.Consciousness and Cognition 8 (2): 186–195. doi:10.1006/ccog.1999.0399.PMID 10448001.
  3. a b Buzsaki, György (2006). “Cycle 9, The Gamma Buzz”Rhythms of the brain. Oxford.
  4. a b c Robert PollackThe Missing Moment, 1999
  5. ^ W. Singer and C.M. Gray, Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18 (1995), pp. 555-586
  6. a b Vanderwolf CH (Feb 2000). “Are neocortical gamma waves related to consciousness?”Brain Res 855 (2): 217–24. doi:10.1016/S0006-8993(99)02351-3PMID 10677593.
  7. ^ Hughes JR. (1964). Responses from the visual cortex of unanesthetized monkeys. pp. 99–153. In: Pfeiffer CC, Smythies JR, (Eds), International review of neurobiology vol. 7, Academic Press, New York OCLC 43986646
  8. ^ Crick, F., & Koch, C. (1990b). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences v.2, 263-275.
  9. ^ Crick, F., Koch, C. (2003). “Framework for consciousness”. Nature Neuroscience 6(2).
  10. ^ Andreas K. Engel, Pascal Fries, Peter Koenig, Michael Brecht, Wolf Singer (1999). “Temporal Binding, Binocular Rivalry, and Consciousness”. Consciousness and Cognition 8 (2).
  11. ^ Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E (Mar 2007). “Synchronization of neural activity across cortical areas correlates with conscious perception”. J Neurosci 27 (11): 2858–65. doi:10.1523/JNEUROSCI.4623-06.2007.PMID 17360907.
  12. ^ Ward LM, Doesburg SM, Kitajo K, MacLean SE, Roggeveen AB (Dec 2006). “Neural synchrony in stochastic resonance, attention, and consciousness”. Can J Exp Psychol60 (4): 319–26. doi:10.1037/cjep2006029PMID 17285879.
  13. ^ <J. Cardin, M. Carle, K. Meletis, U. Knoblich, F. Zhang, K. Deisseroth (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459: 663-668.>
  14. a b c O’Nuallain, Sean. “Zero Power and Selflessness: What Meditation and Conscious Perception Have in Common”. Retrieved 2009-05-30. Journal: Cognitive Sciences 4(2).
  15. ^ Kaufman, Marc (January 3, 2005). “Meditation Gives Brain a Charge, Study Finds”.The Washington Post. Retrieved May 3, 2010.
  16. ^ Lutz A., Greischar L.L., Rawlings N.B., Ricard M., Davidson R.J. (2004). “Long-term meditators self-induce high apmlitude gamma synchrony during mental practice”.Proceedings of the National Academy of Sciences USA 101: 16369–16373.
  17. ^ “Scientific American:Meditation On Demand”.
  18. ^ Whitham EM, Pope KJ, Fitzgibbon SP et al. (Aug 2007). “Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG”Clin Neurophysiol 118 (8): 1877–88.doi:10.1016/j.clinph.2007.04.027PMID 17574912.
  19. ^ Whitham EM, Lewis T, Pope KJ et al. (May 2008). “Thinking activates EMG in scalp electrical recordings”Clin Neurophysiol 119 (5): 1166–75.doi:10.1016/j.clinph.2008.01.024PMID 18329954.
  20. ^ Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (May 2008). “Transient induced gamma-band response in EEG as a manifestation of miniature saccades”.Neuron 58 (3): 429–41. doi:10.1016/j.neuron.2008.03.027PMID 18466752.
  21. ^ Dynamic predictions: Oscillations and synchrony in top-down processing, AK Engel, P Fries, W Singer, Nature Reviews Neuroscience, 2001
  22. ^ Adjamian P, Holliday IE, Barnes GR, Hillebrand A, Hadjipapas A, and Singh KD. (2004) Induced stimulus-dependent Gamma oscillations in visual stress. European Journal of Neuroscience; 20: 587–592.
  23. ^ Hadjipapas A., Adjamian P, Swettenham J.B., Holliday I.E., Barnes G.R. (2007). “Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex”. Neuroimage 35 (2): 518–30.
  24. ^ Muthukumaraswamy SD, Singh KD (2008). “Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex”.NeuroImage 40: 1552–1560.
  25. ^ Swettenham JB, Muthukumaraswamy SD, Singh KD (2009). “Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli”. Journal of Neurophysiology 102: 1241–1253.

 

Print Friendly

Deja un Comentario

X